5,473 research outputs found

    Remarks on twisted noncommutative quantum field theory

    Full text link
    We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twisted structure is not responsible for the presence or absence of UV/IR-mixing, as claimed in the literature.Comment: 13 pages, v2: minor correction

    Utility based pricing and hedging of jump diffusion processes with a view to applications

    Full text link
    We discuss utility based pricing and hedging of jump diffusion processes with emphasis on the practical applicability of the framework. We point out two difficulties that seem to limit this applicability, namely drift dependence and essential risk aversion independence. We suggest to solve these by a re-interpretation of the framework. This leads to the notion of an implied drift. We also present a heuristic derivation of the marginal indifference price and the marginal optimal hedge that might be useful in numerical computations.Comment: 23 pages, v2: publishe

    A Robust Measure of Tidal Circularization in Coeval Binary Populations: The solar-type spectroscopic Binary Population in The Open Cluster M35

    Full text link
    We present a new homogeneous sample of 32 spectroscopic binary orbits in the young (~ 150 Myr) main-sequence open cluster M35. The distribution of orbital eccentricity vs. orbital period (e-log(P)) displays a distinct transition from eccentric to circular orbits at an orbital period of ~ 10 days. The transition is due to tidal circularization of the closest binaries. The population of binary orbits in M35 provide a significantly improved constraint on the rate of tidal circularization at an age of 150 Myr. We propose a new and more robust diagnostic of the degree of tidal circularization in a binary population based on a functional fit to the e-log(P) distribution. We call this new measure the tidal circularization period. The tidal circularization period of a binary population represents the orbital period at which a binary orbit with the most frequent initial orbital eccentricity circularizes (defined as e = 0.01) at the age of the population. We determine the tidal circularizationperiod for M35 as well as for 7 additional binary populations spanning ages from the pre main-sequence (~ 3 Myr) to late main-sequence (~ 10 Gyr), and use Monte Carlo error analysis to determine the uncertainties on the derived circularization periods. We conclude that current theories of tidal circularization cannot account for the distribution of tidal circularization periods with population age.Comment: 37 pages, 9 figures, to be published in The Astrophysical Journal, February 200

    Dynamical Tide in Solar-Type Binaries

    Get PDF
    Circularization of late-type main-sequence binaries is usually attributed to turbulent convection, while that of early-type binaries is explained by resonant excitation of g modes. We show that the latter mechanism operates in solar-type stars also and is at least as effective as convection, despite inefficient damping of g modes in the radiative core. The maximum period at which this mechanism can circularize a binary composed of solar-type stars in 10 Gyr is as low as 3 days, if the modes are damped by radiative diffusion only and g-mode resonances are fixed; or as high as 6 days, if one allows for evolution of the resonances and for nonlinear damping near inner turning points. Even the larger theoretical period falls short of the observed transition period by a factor two.Comment: 17 pages, 2 postscript figures, uses aaspp4.sty. Submitted to Ap

    Seismic tests for solar models with tachocline mixing

    Get PDF
    We have computed accurate 1-D solar models including both a macroscopic mixing process in the solar tachocline as well as up-to-date microscopic physical ingredients. Using sound speed and density profiles inferred through primary inversion of the solar oscillation frequencies coupled with the equation of thermal equilibrium, we have extracted the temperature and hydrogen abundance profiles. These inferred quantities place strong constraints on our theoretical models in terms of the extent and strength of our macroscopic mixing, on the photospheric heavy elements abundance, on the nuclear reaction rates such as S11S_{11} and S34S_{34} and on the efficiency of the microscopic diffusion. We find a good overall agreement between the seismic Sun and our models if we introduce a macroscopic mixing in the tachocline and allow for variation within their uncertainties of the main physical ingredients. From our study we deduce that the solar hydrogen abundance at the solar age is Xinv=0.732±0.001X_{\rm inv}=0.732\pm 0.001 and that based on the 9^9Be photospheric depletion, the maximum extent of mixing in the tachocline is 5% of the solar radius. The nuclear reaction rate for the fundamental pppp reaction is found to be S11(0)=4.06±0.07S_{11}(0)=4.06\pm 0.07 102510^{-25} MeV barns, i.e., 1.5% higher than the present theoretical determination. The predicted solar neutrino fluxes are discussed in the light of the new SNO/SuperKamiokande results.Comment: 16 pages, 12 figures, A&A in press (1) JILA, University of Colorado, Boulder, CO 80309-0440, USA, (2) LUTH, Observatoire de Paris-Meudon, 92195 Meudon, France, (3) Tata Institute of Fundamental Research, Homi Bhabha road, Mumbai 400005, India, (4) Department of Physics, University of Mumbai, Mumbai 400098, Indi

    Delensing CMB Polarization with External Datasets

    Get PDF
    One of the primary scientific targets of current and future CMB polarization experiments is the search for a stochastic background of gravity waves in the early universe. As instrumental sensitivity improves, the limiting factor will eventually be B-mode power generated by gravitational lensing, which can be removed through use of so-called delensing algorithms. We forecast prospects for delensing using lensing maps which are obtained externally to CMB polarization: either from large-scale structure observations, or from high-resolution maps of CMB temperature. We conclude that the forecasts in either case are not encouraging, and that significantly delensing large-scale CMB polarization requires high-resolution polarization maps with sufficient sensitivity to measure the lensing B-mode. We also present a simple formalism for including delensing in CMB forecasts which is computationally fast and agrees well with Monte Carlos.Comment: typos correcte

    The Problem of Characterizing the 4QReworked Pentateuch Manuscripts: Bible, Rewritten Bible, or None of the Above?

    Get PDF
    This is the author's accepted manuscript. The original is available at http://booksandjournals.brillonline.com/content/journals/10.1163/156851708x304895This article engages the problem of whether the five manuscripts classified as 4QReworked Pentateuch (4Q158, 4Q364–367) should be considered extrabiblical compositions or simply expansive copies of the Pentateuch. Since similar methods of reworking scripture appear in both types of text, focusing on the ways scripture is reworked in the 4QRP manuscripts cannot solve the problem. Other criteria such as the literary voice, scope, and coverage of a work are more promising. The fragmentary state of the texts, however, precludes a definitive solution and requires that multiple possibilities be considered

    Standard Solar models in the Light of New Helioseismic Constraints II. Mixing Below the Convective Zone

    Full text link
    In previous work, we have shown that recent updated standard solar models cannot reproduce the radial profile of the sound speed at the base of the convective zone (CZ) and fail to predict the Li7 depletion. In parallel, helioseismology has shown that the transition from differential rotation in the CZ to almost uniform rotation in the radiative solar interior occurs in a shallow layer called the tachocline. This layer is presumably the seat of large scale circulation and of turbulent motions. Here, we introduce a macroscopic transport term in the structure equations, which is based on a hydrodynamical description of the tachocline proposed by Spiegel and Zahn, and we calculate the mixing induced within this layer. We discuss the influence of different parameters that represent the tachocline thickness, the Brunt-Vaissala frequency at the base of the CZ, and the time dependence of this mixing process along the Sun's evolution. We show that the introduction of such a process inhibits the microscopic diffusion by about 25%. Starting from models including a pre-main sequence evolution, we obtain: a) a good agreement with the observed photospheric chemical abundance of light elements such as He3, He4, Li7 and Be9, b) a smooth composition gradient at the base of the CZ, and c) a significant improvement of the sound speed square difference between the seismic sun and the models in this transition region, when we allow the phostospheric heavy element abundance to adjust, within the observational incertitude, due to the action of this mixing process. The impact on neutrino predictions is also discussed.Comment: 15 pages, 7 figures, to be published in ApJ (used emulateapj style for latex2e). New email for A. S. Brun: [email protected]

    The Samaritan Pentateuch and the Scribal Culture of Second Temple Judaism

    Get PDF
    This is the author's accepted manuscript. The original is available at http://booksandjournals.brillonline.com/content/journals/10.1163/15700631-12340103The Samaritan Pentateuch (SP), along with its Qumran forebears, has deservedly been regarded as a key source of information for understanding the scribal culture of early Judaism. Yet studies have tended to emphasize the relative uniformity of the characteristic pre-SP readings as evidence of a scribal approach distinct within Second Temple Judaism. This article argues that both the uniformity and the distinctiveness of these readings have been overstated: there is more internal diversity within pre-SP than is usually recognized, and similar or identical readings are also preserved in other manuscript traditions. Rather than representing a distinctive scribal approach or school, the readings of pre-SP are better taken as a particularly concentrated example of scribal attitudes and techniques that appear to have been widespread in early Judaism
    corecore